

Waffleweb Documentation

Welcome to the Waffleweb docs!

Waffleweb is a WSGI Python web framework for making scalable websites easily. Waffleweb is highly customizable and doesn’t force any project layout.

To get started you should go to Getting Started. For How-to guides you can go to
How-to Guides. If you are looking for something specific you can go to the
Internals Section.

Contents

	
	Getting Started
	
1.1. Installation Guide

1.2. The Basics

	
	How-To Guides
	
2.1. The Request Object

2.2. Responses

2.3. Forms

2.4. Static Files

2.5. Templating

2.6. Custom Error Pages

2.7. Uploaded Files

2.8. Cookies

2.9. Middleware

2.10. Deploying Your Project

	
	Internals
	
3.1. project.py

3.2. app.py

3.3. response.py

3.4. request.py

3.5. static.py

3.6. template.py

3.7. middleware.py

3.8. wsgi.py

3.9. datatypes.py

3.10. cookie.py

3.11. files.py

3.12. parser.py

3.13. errorResponses.py

3.14. Testing Waffleweb

Index

The Basics

This is the basics of Waffleweb. You will get walked through all the basic features of Waffleweb and how to use them.

Creating a project

To start creating your website with Waffleweb you first need to create a project. To create a project you can create a python file and put a WaffleProject object in it as so.

project.py:

from waffleweb import WaffleProject

apps = [

]

yourProject = WaffleProject(apps)

Apps hold all of your pages, we will add some soon.

Creating an app

To add pages to your website you need apps. To create an app you can create a python file and put a WaffleApp object in it as so.

app.py:

from waffleweb import WaffleApp

yourApp = WaffleApp('appName')

WaffleApp only needs to take one variable for now: the name of your app. The name of your app is for some functions to identify your app.

To register your app, all you need to do is add ‘app.yourApp’ to your project’s app list. your project.py should now look as so. Remember the last part of the app string should NOT be the appName of your app. It should be the variable of your WaffleApp.

project.py:

from waffleweb import WaffleProject

apps = [
 'app.yourApp'
]

yourProject = WaffleProject(apps)

Running your project

To run your project under the default address “127.0.0.1:8000” you can use the run() method of your WaffleProject object.

project.py:

if __name__ == '__main__':
 yourProject.run()

In your terminal you should now see:

Waffleweb version 0.1.0
Server listening on host 127.0.0.1, port 8000
Press Ctrl+C to stop server

If you want to change the host or port you can specify them in run().

project.py:

yourProject.run(host='0.0.0.0', port=8080)

Right now if you go to “127.0.0.1:8000” you will see a 404 page. This is because we haven’t
routed any pages yet. We will add some routes later.

Debug Mode

Debug mode allows you to see extra data about 404, traceback and error data in the browser.
You can turn on debug mode by adding debug=True to run().

project.py:

yourProject.run(debug=True)

Example with exception:

[image: Image of debug mode exception page]

Routing

Every website needs good URLs to make a page more memorable. Routing enables you to bind a function to a URL.

To route a URL use the route() decorator.

app.py:

from waffleweb.response import HTTPResponse

@yourApp.route('/')
def index(request):
 return HTTPResponse(request, 'Welcome to the index page!')

@yourApp.route('/about/')
def about(request):
 return HTTPResponse(request, 'About page')

All of your routed functions have to take a request argument. The request argument stores all the request data such as post data, cookies and headers. You have to pass the request argument to the HTTPResponse.

URL Variables

You can add variables to your URL by adding <variableName:type> to your URL. Your function can access the variables through the keyword args of your view function. The type part tells Waffleweb what type to convert the variable to.

app.py:

@yourApp.route('/article/<articleName:str>/')
def articleView(request, articleName):
 return HTTPResponse(request, f'Article: {articleName}'

@yourApp.route('/post/<postId:int>/<postName:str>')
def post(request, postId, postName):
 return HTTPResponse(request, f'Post Number {postId}')

Type options:

	str

	converts the variable to a str

	int

	converts the variable to a int

	float

	converts the variable to a float

Please note that you cannot have a float variable as the last part of your URL. This is because the decimal part of the float will be identified as a file extension.

Redirect behavior

app.py:

from waffleweb.response import HTTPResponse

@yourApp.route('/index')
def index(request):
 return HTTPResponse(request, 'index page')

@yourApp.route('/about/')
def about(request):
 return HTTPResponse(request, 'about page')

The URL for the index page doesn’t end with a slash meaning that if you access the URL ending with a slash you will get shown a 404 page. The URL for the about page has a trailing slash meaning that if you access that page without a trailing slash you will be redirected to the page with a trailing slash.

HTTP Methods

If you only want to allow certain HTTP methods to access your page you can add a optional parameter called methods to the route() decorator.

from waffleweb.response import HTTPResponse

@yourApp.route('/form/', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 return doFormStuff(request.POST)
 return HTTPResponse(request, 'form')

By default Waffleweb only allows GET, HEAD and OPTIONS requests. If you have ‘GET’ in your methods Waffleweb automatically handles the HEAD and OPTIONS methods.

Static files

To add static files to your Waffleweb project all you need to do is make a folder called static and put your files in there. You can change the folder Waffleweb looks in for your static files in a settings.py file in your project directory. Just add STATIC_DIR = 'path/to/static/' to settings.py.

To access these static files in your browser just go to localhost:8000/folder/file.ext. Waffleweb hides the static directory path in the URL to remove complexity. For example, if your project directory looks like the example bellow then to access test.css you would need to go to localhost:8000/css/index.css NOT localhost:8000/static/css/index.css.

yourProj/
 project.py
 app.py
 static/
 css/
 index.css

To access a static file from your app you can use open() or openStatic(). The difference between open() and openStatic() is that openStatic() searches in your static directory and it’s mode is defaulted to ‘rb’.

from waffleweb.static import openStatic
from waffleweb.response import FileResponse

@yourApp.route('/getImage/<imageName:str>')
def index(request, imageName):
 with openStatic(f'/images/{imageName}.jpg') as f:
 return FileResponse(request, f)

For more information you can go to Static Files.

Responses

HTTPResponse()

Just a basic HTTP response.

from waffleweb.response import HTTPResponse

@yourApp.route('/index/')
def index(request):
 return HTTPResponse(request, 'Index Page.')

JSONResponse()

A Json response. Sets the Content-Type to application/json.

from waffleweb.response import JSONResponse

@yourApp.route('/getData/<data:str>')
def getData(request, data):
 return JSONResponse(request, {'data': data})

FileResponse()

A file response. Takes a bytes file object. The FileResponse sets the Content-Type to whatever the mime of the file is.

from waffleweb.static import openStatic
from waffleweb.response import FileResponse

@yourApp.route('/image/')
def image(request):
 with openStatic(f'/images/image.jpg') as f:
 return FileResponse(request, f)

render()

Renders a template and returns a HTTPResponse. Default templating engine is Jinja2 [https://palletsprojects.com/p/jinja/]. Default template directory is templates/. You can change the template directory by adding TEMPLATE_DIR = '/path/to/templates/' to your settings.py file.

from waffleweb.response import render

@yourApp.route('/nameGetter/<name:str>/')
def nameGetter(request, name):
 return render(request, 'nameGetter.html', context={'name': name})

redirect()

Redirects to a page.

from waffleweb.response import redirect

@yourApp.route('/nothing/')
def nothing(request, name):
 return redirect(request, 'https://www.youtube.com/watch?v=dQw4w9WgXcQ', permanent=True)

For more information you can go to Responses.

Custom Error Pages

To add custom error pages for status code you can use the errorhandler() decorator. By default waffleweb shows a generic error page.

@yourApp.errorHandler(404)
def page404(request):
 return HTTPResponse(request, '404 Page', status=404)

You have to set the status code or it will automatically default to 200.

For more information you can go to Custom Error Pages.

Accessing request data

The Request object holds all the data about the request. It stores stuff like POST data, cookies and headers. For more in-depth information you can go to the Request How-To Guide. The Request object is passed into you routed function as the first argument.

To access the method of the request use the method attribute. To access form data you can use the POST attribute.

from waffleweb.response import render

@yourApp.route('/form/', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 name = request.POST['user']
 email = request.POST['email']
 makeAccount(name, email)

 return render(request, 'form.html')

To access URL parameters for a request you can use the URL_PARAMS attribute.

request.URL_PARAMS.get('param1')

For more information you can go to The Request Object.

File Uploads

You can access file uploads with the FILES attribute. The uploaded files are stored in memory. Each uploaded file is a File object. You can access the data of the file with the data attribute. The data of the files are stored in bytes.

from waffleweb.response import render
from waffleweb.static import openStatic

@yourApp.route('/upload/', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 file = request.FILES.get('file').data
 f = openStatic('file.jpg', 'wb')
 f.write(file)
 f.close()

 return render(request, 'upload.html')

For more information you can go to Uploaded Files.

Cookies

To access cookies from a request you can use the COOKIES attribute. Each cookie is a Cookie object so to access the value use the value attribute. To set a cookie you can use the setCookie() method of response objects. You can remove a cookie from a response with deleteCookie().

Getting Cookies:

from waffleweb.response import HTTPResponse

@yourApp.route('/index/')
def index(request):
 cookie = request.COOKIES.get('cookieName').value
 return HTTPResponse(request, 'Index Page')

Adding Cookies:

from waffleweb.response import HTTPResponse

@yourApp.route('/index/')
def index(request):
 res = HTTPResponse(request, 'Index Page')
 res.setCookie('cookieName', 'value')
 return res

Removing Cookies from response:

from waffleweb.response import HTTPResponse

@yourApp.route('/index/')
def index(request):
 res = HTTPResponse(request, 'Index Page')
 res.setCookie('cookieName', 'value')
 res.deleteCookie('cookieName')
 return res

For more information you can go to Cookies.

Adding Middleware

To add middleware to your project, you can add a argument to your WaffleProject object in your project.py file.

project.py:

from waffleweb import WafflewebProject

middleware = [
 'addCookieMiddleware.addCookie'
]

yourProject = WaffleProject(apps, middleware=middleware)

For more information you can go to Middleware.

Getting Started

How to get started with Waffleweb.

Contents

	Installation Guide

	The Basics

Installation

Python Version

Waffleweb has only been tested in Python 3.9, so it is recommended that you use Python 3.9<=.

Dependencies

	Jinja2 [https://palletsprojects.com/p/jinja/] is used for the default templating engine.

	pytz [https://pypi.org/project/pytz/] is used for timezones.

Installing Waffleweb

Waffleweb can be installed with pip [https://pip.pypa.io/en/stable/].

$ pip install waffleweb

How-To: Cookies

Cookies are very useful for a variety of purposes. Some purposes include analytics and tracking logins. Waffleweb makes it easy to set cookies and access cookies.

Accessing Cookies

Sent cookies are stored in the COOKIES attribute of the request. The cookies are stored in a Cookies object. The Cookies object act just like a normal dictionary except it has some special ability used by Waffleweb internally. All the cookies are stored in Cookie Objects. To access the value of the cookies you can use the value attribute.

from waffleweb.response import render

@yourApp.route('/index', methods=['GET'])
def index(request):
 cookie = request.COOKIES.get('cookie', None)
 if cookie is not None:
 doStuff(cookie.value)

 return render(request, 'index.html')

Adding Cookies

You can add cookies to the response with the setCookie() method. setCookie() takes 8 arguments: the first two are required but the other 6 are optional. The first two are the name and value of the cookie. The other six are as so:

	path (optional) (str) - The path of the cookie, defaults to the route of your app.

	maxAge (optional) (str) - The maximum age of the cookie.

	domain (optional) (str) - The domain of the cookie.

	secure (optional) (bool) - If the cookie is secure.

	HTTPOnly (optional) (bool) - If the cookie is HTTP Only.

	sameSite (optional) (str) - If your cookie is first-party of same-site.

from waffleweb.response import render

@yourApp.route('/index', methods=['GET'])
def index(request):
 res = render(request, 'index.html')

 cookie = request.COOKIES.get('cookie', None)
 if cookie is not None:
 doStuff(cookie.value)
 else:
 res.setCookie(name='cookie', value='value')

 return res

Deleting Cookies

If you add a cookie to a response and want to delete you can use the deleteCookie() method. deleteCookie() takes only one argument: the name of the cookie. If the cookie cannot be found a ValueError is raised.

from waffleweb.response import render

@yourApp.route('/index', methods=['GET'])
def index(request):
 res = render(request, 'index.html')

 res.setCookie(name='cookie', value='value')
 res.deleteCookie('cookie')

 return res

How-To: Custom Error Pages

If you want nice looking error pages rather than plain black and white ones you can use the errorHandler() decorator. The errorHandler() makes it easy to create custom error pages for HTTP status codes.

Error handlers work a lot like normal routes except they only get called when the status code in their arguments get returned. Your error handlers should take a argument for the request. The error handler should return a response.

This handler gets called when a 404 page is needed:

from waffleweb.response import render

@yourApp.errorHandler(404)
def pageNotFound(request):
 return render(request, '404.html', {'path': request.path}, status=404)

This handler gets called when an internal server error occurs:

from waffleweb.response import render

@yourApp.errorHandler(500)
def serverError(request):
 return render(request, '500.html', status=500)

This handler gets called when the client sends a method that is not allowed:

from waffleweb.response import render

@yourApp.errorHandler(405)
def methodNotAllowed(request):
 return render(request, '405.html', {'method': request.method}, status=405)

This handler gets called when the client send a malformed request. It must not take any arguments.

@yourApp.errorHandler(400)
def methodNotAllowed():
 return render(filePath='405.html')

Remember to set the status of the response to the status of the handler, because if you don’t the status will the 200 OK.

How-To: Deploying Your Project

Waffleweb allows you to deploy your project with WSGI. You should not use the server built into Waffleweb, this is because the test server doesn’t have good security and it has a request size limitations. In this How-To guide you will be shown how to deploy your project with Gunicorn [https://gunicorn.org/].

Installing Gunicorn

To install Gunicorn you can use pip.

$ pip install gunicorn

Getting The WSGI Callable

The WSGI callable is a method of your WaffleProject called “wsgiApplication”. Make sure you only put the name of the method. Do not call the method.

wsgiApp = yourProject.wsgiApplication

Connecting The Callable To Gunicorn

Connecting the WSGI callable to Gunicorn is easy. Just go to your project directory in the terminal and run this command.

$ gunicorn project:wsgiApp

In your terminal you should now see something like this:

[2022-07-02 17:34:48 +1200] [18669] [INFO] Starting gunicorn 20.1.0
[2022-07-02 17:34:48 +1200] [18669] [INFO] Listening at: http://127.0.0.1:8000 (18669)
[2022-07-02 17:34:48 +1200] [18669] [INFO] Using worker: sync
[2022-07-02 17:34:48 +1200] [18670] [INFO] Booting worker with pid: 18670

If you go to http://127.0.0.1:8000 you should now see your website working.

For more information on Gunicorn you can go to the Gunicorn Docs [https://docs.gunicorn.org/en/stable/index.html].

How-To: Forms

For users to submit data to your server you can use forms. Forms are vital for account systems and social media sites. In this How-To guide you will learn how to make forms and access the data in your routes.

Basic forms

The form we are going to make is to get data and save it to a json file. To create a basic form we first need to route a function. We also need to make a html page for the form.

app.py:

from waffleweb.response import render

@yourApp.route('/form')
def form(request):
 return render(request, 'form.html')

form.html:

<h1>Form:</h1>
<form method="post">
 <label for="username">Username:</label>
 <input type="text" name="username">

 <label for="favThing">Favourite Thing:</label>
 <input type="text" name="favThing">

 <button type="submit">Submit</button>
</form>

Now we need to add logic to our route. We also need to create a folder called ‘static’ with a file called ‘data.json’. For the the logic to work we need add some boilerplate data to the file.

data.json:

{"entries": []}

app.py:

import json
import bleach
from waffleweb.static import openStatic
from waffleweb.response import render

@yourApp.route('/form', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 name = bleach.clean(request.POST.get('username', 'N/A'))
 favThing = bleach.clean(request.POST.get('favThing', 'N/A'))

 with openStatic('data.json', 'r') as f:
 data = json.loads(f.read())

 with openStatic('data.json', 'w') as f:
 entry = {'username': name, 'favThing': favThing}
 data['entries'].append(entry)
 f.write(json.dumps(data))

 return render(request, 'form.html')

All the data from the form is stored in the POST attribute. The get method is used for retrieving data in case the client doesn’t send the correct data. The bleach [https://bleach.readthedocs.io/en/latest/] library is used to clean the data in this example.

File Forms

If your are making a social media you will probably need to accept file uploads. The uploaded files of the request are stored in the FILES attribute. This form will take a file and the server will save it. You need to set the enctype of the form to “multipart/form-data”, so that the data of the file goes through.

upload.html:

<h1>Upload:</h1>
<form method="post" enctype="multipart/form-data">
 <label for="file">File:</label>

 <input type="file" name="file">

 <button type="submit">Submit</button>
</form>

app.py:

from waffleweb.static import openStatic
from waffleweb.response import render

@yourApp.route('/upload', methods=['GET', 'POST'])
def upload(request):
 if request.method == 'POST':
 file = request.FILES['file']
 with openStatic(f'{file.name}/', 'wb') as f:
 f.write(file.data)
 return render(request, 'upload.html')

All the files are stored in File objects. The data is stored in bytes in the data attribute. Because of this, to save the file you have to set the mode of openStatic() to ‘wb’. The name of the file is stored in the name attribute.

If your want to learn more about file uploads you can go to the Uploaded Files How-To guide.

How-To Guides

This section of the docs is a collection of How-To Guides.

	Routing

	The Request Object

	Responses

	Forms

	Static Files

	Templating

	Custom Error Pages

	Uploaded Files

	Cookies

	Middleware

	Deploying Your Project

How-To: Middleware

Middleware is code that modifies the request before going into your code, and the response after coming out of your route function. Waffleweb allows you to add middleware to your apps and project easily.

Adding Middleware

Project Wide Middleware

To add middleware to your entire project you can add the middleware argument to your WaffleProject. The middleware argument is a list of your middleware. All the middleware are strings with the module and middleware class. Example: ‘testModule.Middleware’ or ‘middleware.testModule.Middleware’.

from waffleweb import WaffleProject

apps = [
 #Your apps
]

middleware = [
 'middleware.addCookieMiddleware.AddCookie'
]

proj = WaffleProject(apps=apps, middleware=middleware)

App Specific Middleware

Adding app-specific middleware is much the same as adding middleware to your project. All you need to do is add the middleware argument to your WaffleApp. The middleware is again a list formatted the same way as the project-wide middleware.

from waffleweb import WaffleApp

middleware = [
 'middleware.addCookieMiddleware.AddCookie'
]

app = WaffleApp('app', middleware=middleware)

Creating Middleware

Creating middleware for Waffleweb is easy. The middleware is class with one or two methods named “after” and “before”. The “after” method should take a Request object and return a Request object. The “before” method should take a response and return a response.

class ExampleMiddleware:
 def before(request):
 request.COOKIES['cookie'] = 'value'
 return request

 def after(response):
 response.headers['header'] = 'value'
 return response

Please note that you don’t need both methods, you only need one of two methods.

How-To: Responses

For your routes to work properly they have to return a response. Waffleweb provides several responses for you to use in your project. There are several types of responses built into Waffleweb such as files, json and html.

Responses

HTTPResponse

The HTTPResponse is the most basic of all the responses. It is just a basic response for text. The first argument is the request passed into your routed function. The second argument is the content of the response. The Date and Content-Length headers are automatically added to the response.

from waffleweb.response import HTTPResponse

@yourApp.route('/index')
def index(request):
 return HTTPResponse(request, 'The index page.')

To change the status of the response you can use the status argument.

from waffleweb.response import HTTPResponse

@yourApp.route('/about')
def about(request):
 return HTTPResponse(request, 'The about page.', status=402)

To change the content type of the response you can use the contentType argument.

from waffleweb.response import HTTPResponse

@yourApp.route('/text')
def text(request):
 return HTTPResponse(request, 'Some text', contentType='text/plain')

You can add headers with the headers attribute. The headers are stored in a MultiValueOneKeyDict. For more advanced usage go to there.

from waffleweb.response import HTTPResponse

@yourApp.route('/index')
def index(request):
 res = HTTPResponse(request, 'The index page.')
 res.headers['headerName'] = 'value'
 res.headers['otherHeader'] = ['value1', 'value2']
 return res

To add cookies you can use the setCookie() method. The path of the cookies are automatically set to the path of your route. For more information you can go to Cookies. You can delete a cookie from a response just as easily with the deleteCookie() method. If the cookie cannot be found it will raise a ValueError.

from waffleweb.response import HTTPResponse

@yourApp.route('/cookie')
def cooke(request):
 res = HTTPResponse(request, 'The index page.')
 res.setCookie('cookieName', 'value')
 res.deleteCookie('cookieName')
 return res

JSONResponse

JSONResponse is for JSON responses. It can be particularly useful for APIs. It inherits from the HTTPResponse class. The first argument is the request passed into your routed function. The second argument is a JSON serializable object.

from waffleweb.response import JSONResponse

@yourApp.route('/data')
def data(request):
 return JSONResponse(request, {'number': 123})

As it inherites from the HTTPResponse class you can do most of the same things with it as the HTTPResponse, such as adding headers and cookies.

FileResponse

FileResponse is a response for files. It inherits from the HTTPResponse class. The first argument is the request passed into your routed function. The second argument is a bytes file object. The mimetype of the file is guessed if you don’t provide the mimeType argument.

from waffleweb.response import FileResponse
from waffleweb.static import openStatic

@yourApp.route('/file')
def file(request):
 with openStatic('testFile.jpeg') as f:
 return FileResponse(request, f)

openStatic() looks in your STATIC_DIR directory for files and its mode is set to ‘rb’. To learn more about static functions you can go to Static Files. If you want to use the normal open() function, just set the mode argument to ‘rb’

render()

render() is a response for templates. The first argument is the request passed into your routed function. The second argument is the path to the template. It looks under your TEMPLATE_DIR for the templates. The third optional argument is the variables for the templates. render() uses Jinja2 for templating by default.

from waffleweb.response import render

@yourApp.route('/template')
def template(request):
 return render(request, 'template.html', {'var1': '1234'})

To learn more about templating you can go to Templating

Redirects

HTTPResponseRedirect

HTTPResponseRedirect is a redirect. Its only argument is the location to redirect to.

from waffleweb.response import HTTPResponseRedirect

@yourApp.route('/redirect')
def redirect(request):
 return HTTPResponseRedirect('https://www.youtube.com/watch?v=dQw4w9WgXcQ')

HTTPResponsePermenentRedirect

HTTPResponsePermenentRedirect is a permanent redirect. Its only argument is the location to redirect to.

from waffleweb.response import HTTPResponsePermenentRedirect

@yourApp.route('/permanentRedirect')
def permanentRedirect(request):
 return HTTPResponsePermenentRedirect('https://www.youtube.com/watch?v=dQw4w9WgXcQ')

redirect()

A shortcut for redirects. It takes two arguments: the place to redirect to and whether or not it is a permanent redirect or not.

from waffleweb.response import redirect

@yourApp.route('/redirect')
def redirect(request):
 return redirect('https://www.youtube.com/watch?v=dQw4w9WgXcQ', permanent=True)

How-To: Static Files

All good websites need static files like images, fonts and CSS. In this How-To guide you will be guided through how to access and use static files. You will also be shown how to modify certain things, like changing how Waffleweb looks for static files.

Adding Static Files

You can add static files to your project by creating a directory in your project with your STATIC_DIR (default is “/static”) and putting your static files in there.

Changing the Static Directory

To change the directory in which static files are looked for in you can create a file in your project directory called “settings.py”. Then in that file add a variable called “STATIC_DIR” with the path for Waffleweb to look for static files in.

settings.py:

STATIC_DIR = 'files/static'

Accessing Static Files

You can access static files from your templates or from your route functons.

Accessing in Routes

To access your static files from your route functions you can use the openStatic() function. openStatic() takes all the same arguments as open() except by default it looks under your STATIC_DIR (default is “/static”). You can change how openStatic() looks for static files. We will get into that later. openStatic()’s mode by default is “rb” because the FileResponse takes a binary file.

from waffleweb.static import openStatic
from waffleweb.response import FileResponse

@yourApp.route('/file', methods=['GET'])
def file(request):
 with openStatic('file.jpg') as f:
 return FileResponse(request, f)

Accessing in Templates

Whenever a URL ends with a file extension Waffleweb looks for a static file with that path using openStatic(). if openStatic() returns a file, a FileResponse is sent, but if it doesn’t return a file then it sends a 404 page. By default it looks under your STATIC_DIR (default is “/static”). You can also access it in the browser this way.

To access “./STATIC_DIR/CSS/index.css” in the browser you can go to “localhost:8000/CSS/index.css”.

Changing How Waffleweb Looks For Static Files

To change how Waffleweb looks for static files you can make your own function to find static. To do this you can create a file called “settings.py”. Then in that file you need to add a variable called “DEFUALT_STATIC_FINDER” with the function to find static. By default Waffleweb uses the findStatic function.

DEFUALT_STATIC_FINDER = staticFinderFunction

Your static finder function should take all the same arguments as open() and return what open() returns. It should return a file in bytes.

The DEFUALT_STATIC_FINDER is called by openStatic() with all its arguments. openStatic() returns what the DEFUALT_STATIC_FINDER returns.

When a file is accessed from the browser Waffleweb calls function as so:

#Accessed URL: "localhost:8000/CSS/file.css"

DEFUALT_STATIC_FINDER('CSS/file.css', 'rb', -1, None, None, None, True, None)

How-To: Templating

Templating is useful for when you want have complex pages with variables and simple logic. By default Waffleweb uses Jinja2 [https://palletsprojects.com/p/jinja/] for templating. You can change the template renderer. we will get into that later. In this How-To guide you will learn the basics of creating Jinja templates and how to render them with Waffleweb.

Rendering Templates

You can render templates with one of two ways: The renderTemplate() function or using the render() response. renderTemplate() renders the template and returns the rendered template whereas render() renders the template and returns an HTTPResponse.

By default Waffleweb looks in the “template” directory for templates but your can change it by creating a file called “settings.py” and add a variable called “TEMPLATE_DIR”.

TEMPLATE_DIR = 'static/html'

renderTemplate()

This finds a template and renders with the context.

	renderTemplate takes two arguments:
	
	filePath (str) - The path to the template.

	context (dict) - These are the variables for the template.

from waffleweb.template import renderTemplate
from waffleweb.response import HTTPResponse

@yourApp.route('/template', methods=['GET'])
def template(request):
 page = renderTemplate('page.html', {'var1': 'value'})
 return HTTPResponse(request, page)

render()

This calls renderTemplate with the filePath and context and puts it in a HTTPResponse then returns the response.

	render takes 6 arguments:
	
	request (Request) - The request passed into the routed function.

	filePath (str) - The path to the template.

	context (dict) - These are the variables for the template.

	The other arguments can be found in the template.py page.

from waffleweb.response import render

@yourApp.route('/template', methods=['GET'])
def template(request):
 return render(request, 'page.html', {'var1': 'value'})

Creating templates

This is the basics of how to create templates for Jinja2.

Variables In Templates

You can add variables to your template with the context argument of the template rendering function. To access your variables in your template all you need to do is surround them with two sets of curly brackets.

<h1>{{ var1 }}</h1>
<p>{{ var2 }}</p>

Logic In Templates

You can add simple logic to your template by surrounding the logic with a set of curly brackets and percentage signs. Logic in template is similar to python but it has it’s limitations. You can add if statements and for loops.

If Statment:

{% if var1 is 'on' %}
 <h1>on</h1>
{% elif var1 is 'off' %}
 <h1>on</h1>
{% else %}
 <h1>N/A</h1>
{% endif %}

For Loop:

{% for var in dictVar %}
 <p>{{ var }}</p>
{% endfor %}

To learn more about creating template you can go the the Jinja Docs [https://jinja.palletsprojects.com/en/3.1.x/templates/].

Functions in templates

Waffleweb has one built in template function: getRelativeUrl().

<h1>{{ getRelativeUrl('news:article', id=1234, name='Something happend!') }}</h1>

You can add your own custom template functions by creating a file called “settings.py” and adding a dictionary named “TEMPLATE_FUNCTIONS” with the names of the functions and the functions themselves.

TEMPLATE_FUNCTIONS = {'func1': func1, 'func2': func2}

This only work when using the default rendering functions.

Adding Your Own Template Renderer

Adding your own template renderer is easy. All you have to is create a file called “settings.py” and add a variable called “TEMPLATE_RENDERER”.

TEMPLATE_RENDERER = renderer

Your template renderer must take a file path and the context (variables) for the template. It must return a string of the rendered template.

If you have a TEMPLATE_RENDER supplied it will be called by renderTemplate(). So out of the box it will automatically work with render().

How-To: The Request Object

The Request object stores all the data of the request. It stores stuff like POST data, file uploads, cookies and headers. The Request object is passed into your view functions as the first argument. If you are looking for the API reference of the Request object you can go to the request.py page.

To get the method of request you can use the method attribute.

from waffleweb.response import render

@yourApp.route('/upload', methods=['GET', 'POST'])
def upload(request):
 if request.method == 'POST':
 return doUploadStuff(request)
 else:
 return render(request, 'form.html')

Accessing headers

The headers of the request is stored in a dict in the META attribute. It is recommended to use get() to get the POST data as the client might not the send the expected headers.

from waffleweb.response import render

@yourApp.route('/page', methods=['GET'])
def page(request):
 userAgent = request.META.get('USER_AGENT', None)
 if userAgent == 'agent':
 return render(request, 'page1.html')
 else:
 return render(request, 'page2.html')

Accessing POST data

The POST data of the request is stored in a dict in the POST attribute. It is recommended to use get() to get the POST data as the client might not the send the expected POST data.

from waffleweb.response import render

@yourApp.route('/form', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 name = request.POST.get('name', 'john_doe')
 doStuff(name)
 return render(request, 'form.html')

Accessing file uploads

The file uploads of the request is stored in a dict in the FILES attribute. All the files are File objects. The content of the file is stored in the data attribute of the file and the name is stored in the name attribute.

from waffleweb.response import render

@yourApp.route('/upload', methods=['GET', 'POST'])
def form(request):
 if request.method == 'POST':
 file = request.FILES.get('file', None)
 if file is not None:
 with open(f'files/{file.name}', 'x') as f:
 f.write(file.data)

 return render(request, 'upload.html')

In a real life situation you should make sure the content or name is clean.

For more information you can go to Uploaded Files.

Accessing URL parameters

URL parameters are the ‘?paramName=value’ at the end of the URL. URL parameters are useful for when you want to send data in a GET request. URL parameters are stored in a dict in the URL_PARAMS attribute. Again it is recommended to use get() to get the parameters data as the client might not the send the correct parameters.

from waffleweb.response import render

@yourApp.route('/search', methods=['GET'])
def search(request):
 term = request.URL_PARAMS.get('term', None)
 if term is None:
 return render(request, 'searchPage.html')

 results = getResults(term)
 return render(request, 'searchResults.html', {'results': results})

As this is just an example it does not clean the data, but in a real life scenario you should clean the data.

Accessing cookies

Cookies are very useful for many reasons, such as identifying users. Cookies are stored in a dict as Cookie objects in the COOKIES attribute. Once again it is recommended to use get() to get the parameters data, as the client might not the send the correct cookies. You can access the value of the cookie with the value attribute.

from waffleweb.response import render

@yourApp.route('/enter', methods=['GET'])
def enter(request):
 if 'name' in request.COOKIES.keys():
 if request.COOKIES['name'].value == 'john':
 return render(request, 'secret.html')
 else:
 return render(request, 'user.html', {'name': request.COOKIES['name'].value})
 else:
 return render(request, 'enter.html')

Accessing other data

To access the raw request you can use the rawRequest attribute.

To access the body of the request you can use the body attribute.

How-To: Uploaded Files

Uploaded files are key to any image based social media platform. Waffleweb makes receiving and using uploaded files easy.

File uploads are stored in the FILES attribute of the Request object passed into your route functions. The files are stored in File objects. You can access the data of the file with the data attribute. You can access the name of the file with the name attribute.

The data of files are stored in bytes so to save the file you will need to set the mode of open() to “wb”.

from waffleweb.static import openStatic
from waffleweb.response import render
import bleach

@yourApp.route('/upload', methods=['GET', 'POST'])
def upload(request):
 if request.method == 'POST':
 file = request.FILES.get('file', None)
 if file is not None:
 name = bleach.clean(file.name)
 with openStatic(f'uploads/{name}', 'wb') as f:
 f.write(file.data)

 return render(request, 'uploadForm.html')

You should clean the data to prevent data that could break things.

If your are using the built-in test server some of your files may not be fully uploaded. This is becuase of the request size limit. You can get around this by using a WSGI server, See Deploying Your Project.

You can access the content type of the file with the contentType attribute.

The size of the file is stored in the size attribute.

Internals

This part of the documentation cover the code and internals of Waffleweb.

Contents

	project.py

	app.py

	response.py

	request.py

	static.py

	template.py

	middleware.py

	wsgi.py

	datatypes.py

	cookie.py

	files.py

	parser.py

	errorResponses.py

	Testing Waffleweb

Testing Waffleweb

This page is for how to test waffleweb waffleweb on the backend. If you are contributing to waffleweb, you will probably need to write tests.

Running the Tests

To run the tests all you have to do is download the repository from here [https://github.com/Berserkware/waffleweb]. You can then traverse to folder in the terminal, and run the following command.

python3 -m unittest discover -s tests -p '*Test.py'

If the tests are not running, make sure Waffleweb is installed.

Writing Tests

The Waffleweb tests use the unittest library. To learn how to use the unittest library you can go to this tutorial [https://www.datacamp.com/tutorial/unit-testing-python].

Special Testing Methods

WaffleApp objects have a special method for sending test requests to the apps without running a server. The method is called request. The request method takes one argument: a raw bytes request. The request goes through the same process that requests take when going through the server. This means that middleware will also work.

import unittest

class TestClass(unittest.TestCase):
 def test_app(self):
 app = WaffleApp('testApp')

 @app.route('/index')
 def index(request):
 return HTTPResponse(request, 'index')

 res = app.request(b'GET /index HTTP/1.1\r\n\r\n')
 self.assertEqual(res.content, b'index')

app.py

class waffleweb.WaffleApp(appName, middleware=[])

The WaffleApp object is what you attach your views and app specific middleware to.

	Parameters:
	
	appName (str) - The name of your app.

	middleware (list[str]) - A list of your app’s middleware. All the middleware are strings with the module and middleware class. Example: ‘testModule.Middleware’ or ‘middleware.testModule.Middleware’.

route(path='/', name=None, methods=['GET'])

A decorator to route a function to an URL.

	Parameters:
	
	path (str) - The path to your view.

	name (str) - The name of your view.

	methods (list[str]) - The allowed methods for your view.

errorHandler(statusCode)

A decorator to route a function to a certain error code. Whenever you return a response with a status code a errorHandler will be looked for with that status code. it will return your errorHandler.

	Parameters:
	
	statusCode (int) - The status code to route the function to.

request(rawRequest)

Sends a request to any of the views. It’s main use is for the testing of waffleweb. It goes through the normal process that the requests takes when going through the server, except it doesn’t go through a server.

	Parameters:
	
	rawRequest (bytes) - A byte request.

Returns: Response

Usage:

from waffleweb import WaffleApp

app = WaffleApp('appName')

@app.route('/')
def index(request):
 return HTTPResponse(request, 'index')

res = app.request(b'GET /index HTTP/1.1\r\nHeader-Name: value\r\n\r\n')

cookie.py

class waffleweb.cookie.Cookie(name, value, path=None, maxAge=None, domain=None, secure=False, HTTPOnly=False, sameSite='Lax`)

A Cookie. str() returns a string for the Set-Cookie header.

	Parameters:
	
	name (str) - The name of the cookie.

	value (str) - The value of the cookie.

	path (optional) (str) - The path of the cookie, defaults to the route of your app.

	maxAge (optional) (str) - The maximum age of the cookie.

	domain (optional) (str) - The domain of the cookie.

	secure (optional) (bool) - If the cookie is secure.

	HTTPOnly (optional) (bool) - If the cookie is HTTP Only.

	sameSite (optional) (str) - If your cookie is first-party of same-site.

class waffleweb.cookie.Cookies(cookies=None, *args, **kwargs)

Inherites from dict

A special dictionary for cookies. str() returns a string of the cookies. For example: ‘cookieName=value; cookieName2=value’.

	Parameters:
	
	cookies (str) - A string of all your the cookies. All of them get turned into Cookie objects. For example: ‘cookieName=value; cookieName2=value’.

datatypes.py

class waffleweb.datatypes.MultiValueOneKeyDict(data={}, *args, **kwargs)

Inherits from dict.

This is a dictionary where one key can have multiple values.

	Parameters:
	
	data (optional) (dict) - A normal dictionary for initial data, to add multiple values, put them in a list.

{'data1': ['value1', 'value2'], 'data2': 'value'}

Usage:

Getting:

Getting a item from a key with only one value:

>>> dic = MultiValueOneKeyDict({'data': 'value'})
>>> dic['data']
'value'

Getting a time from a key with multiple values:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> dic['data', 1]
'value2'

Getting all the values of a key:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> dic['data']
['value1', 'value2']

Setting:

Setting a value to a new key:

>>> dic = MultiValueOneKeyDict()
>>> dic['data'] = 'value'
>>> dic
{'data': ['value']}

Setting multiple values to a new key:

>>> dic = MultiValueOneKeyDict()
>>> dic['data'] = ['value1', 'value2']
>>> dic
{'data': ['value1', 'value2']}

Adding a value to an existing key:

>>> dic = MultiValueOneKeyDict({'data': 'value1'})
>>> dic['data'] = 'value2'
>>> dic
{'data': ['value1', 'value2']}

Adding multiple values to an existing key:

>>> dic = MultiValueOneKeyDict({'data': 'value1'})
>>> dic['data'] = ['value2', 'value3']
>>> dic
{'data': ['value1', 'value2', 'value3']}

Changing specific value:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> dic['data', 1] = 'newValue'
>>> dic
{'data': ['value1', 'newValue']}

Overwriting a key:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> dic['data', None] = 'newValue'
>>> dic
{'data': ['newValue']}

Deleting:

Deleting a key and all it’s values:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> del dic['data']
>>> dic
{}

Deleting a specific value from a key:

>>> dic = MultiValueOneKeyDict({'data': ['value1', 'value2']})
>>> del dic['data', 1]
>>> dic
{'data': ['value1']}

get(keyname, index=None, default=None)

Return the value of the item with the specified key. If your key has more than one value you will need to provide a index otherwise it will return all the items. Returns the item.

	Parameters:
	
	keyname (str) - The key name.

	index (int) - The index of the value.

	default (any) - If your key cannot be find then return this.

Returns: str or list

setdefault(keyname, index=None, value=None)

Return the value of the item with the specified key. If your key has more than one value you will need to provide a index. If the key doesn’t exist, set it to the specified value. To overwrite all the items set the index to None. Returns the value of the item.

	Parameters:
	
	keyname (str) - The key name.

	index (int) - If your key has more than one value then you will need to provide the index of the value.

	value (str) - Value to set if key doesn’t exist.

Returns: str or list

pop(keyname, index=None, default=None)

Deletes the value at the specified key. If your key has more than one value you can provide an index to specify a value. If your key has more than one value and you don’t provide a value it will delete all the values. Returns the deleted value.

	Parameters:
	
	keyname (str) - The key name.

	index (int) - The index of the value.

	default (any) - If your key cannot be find then return this.

Returns: str or list

keys()

Returns all the keys of the dictionary.

Returns: dict_keys

items()

Returns all the items of the dictionary.

Returns: dict_items

copy()

Returns a copy of the dictionary.

Returns: dict

errorResponses.py

function waffleweb.errorResponses.badRequest(apps, debug)

It gets a 400 Bad Request response.

	Parameters:
	
	apps (Request) - The apps to find the error handler.

	debug (bool) - If the response should be debug.

Returns: HTTPResponse

files.py

class waffleweb.files.File(name, data, contentType, size=None)

A file for post file uploads.

	Parameters:
	
	name (str) - The name of the file.

	data (bytes) - The file data.

	contentType (str) - The content type of the file.

	size (int) - The size of the file.

middleware.py

class waffleweb.middleware.MiddlewareHandler(middleware, apps=None)

A handler of middleware. Middleware gets ran on the request before your view receives it and on the response before it is sent.

	Parameters:
	
	middleware (list[str]) - A list of all your middleware. You need to format the middleware strings as so: ‘module.MiddlewareClass’.

	apps (list) - If you want to add your own apps instead of using waffleweb.defaults.APPS.

loadMiddleware(middleware)

Loads all the middleware into a list of dictionaries. The dictionaries include the module and the class of the middleware: {'module': middleware module, 'middleware': middlwareClass,}.

	Parameters:
	
	middleware (list[str]) - A list of all the middleware needed to be loaded. You need to format the middleware strings as so: ‘module.MiddlewareClass’.

Returns: list[dict]

runRequestMiddleware(request, app)

Runs all the middleware on the request and then returns the request. It calls the before(request) method on the middleware classes.

	Parameters:
	
	request (Request) - The request to run the middleware on.

	app (WaffleApp) - The app of the route matching the URL (for app specific middleware).

Returns: Request

runResponseMiddleware(response, app)

Runs all the middleware on the response and then returns the response. It calls the after(response) method on the middleware classes.

	Parameters:
	
	request (HTTPResponse) - The response to run the middleware on.

	app (WaffleApp) - The app of the route matching the URL (for app specific middleware).

Returns: HTTPResponse

parser.py

function waffleweb.parser.parsePost(body, contentType)

Parses post data and returns two dictionaries in a tuple: post data and files. It it cannot parse the data it will raise a ParsingError.

	Parameters:
	
	body (bytes) - The body of the request.

	contentType (str) - The content type of the request.

Returns: tuple[dict]

function waffleweb.parser.parseBody(request)

Takes a raw request and returns the body part of the request. It it cannot parse the data it will raise a ParsingError.

	Parameters:
	
	request (bytes) - A raw request.

Returns: bytes

function waffleweb.parser.parseHeaders(request)

Takes a raw request and returns a dictionary of the headers in string form. It it cannot parse the data it will raise a ParsingError.

	Parameters:
	
	request (bytes) - A raw request.

Returns: dict

project.py

class waffleweb.WafflewebProject(apps, middleware=[])

The WafflewebProject object is where you can access the wsgi app and a test server. It is also a central point for your project.

	Parameters:
	
	apps (list[str]) - A list of all your apps. All the apps are strings with the module and the WaffleApp name. Example: ‘testModule.yourApp’ or ‘apps.testModule.yourApp’.

	middleware (optional) (list[str]) - A list of your middleware. All the middleware are strings with the module and middleware class. Example: ‘testModule.Middleware’ or ‘middleware.testModule.Middleware’.

loadApps(apps)

Loads all the apps into a list of dictionaries. The dictionaries have the module of the app and the WaffleApp object: {'module': app module, 'app': WaffleApp}.

	Parameters:
	
	apps (list[str]) - A list of apps. All the apps are strings with the module and the WaffleApp name. Example: ‘testModule.yourApp’ or ‘apps.testModule.yourApp’.

Returns: list

run(host='127.0.0.1', port=8000, debug=False)

Runs a test server. This shouldn’t be used in production as it does not have any security checks.

	Parameters:
	
	host (optional) (str) - The host of your website.

	port (optional) (int) - The port of your website.

	debug (optional) (bool) - If your server is in debug mode.

Returns: None

wsgiApplication(environ, startResponse)

A WSGI application. As outlined in PEP 3333 [https://peps.python.org/pep-3333/].

	Parameters:
	
	environ (dict) - For your wsgi server gateway. As outlined in PEP 3333 [https://peps.python.org/pep-3333/].

	startResponse (func) - For your wsgi server gateway. As outlined in PEP 3333 [https://peps.python.org/pep-3333/].

Returns: iter()

request.py

class waffleweb.request.Request(rawRequest, IP, wsgi=False)

A object for storing all the request data.

	Parameters:
	
	rawRequest (bytes) - The raw request.

	IP (str) - The IP of the client sending the request.

	wsgi (bool) - If the request is wsgi or not.

	Important attributes:
	
	FILES (dict) - The uploaded files of the request.

	META (dict) - The headers of the request.

	POST (dict) - The POST data of the request.

	URL_PARAMS (dict) - The URL parameters of the request.

	body (bytes) - The body of the request.

	COOKIES (Cookies) - All the request`s cookies.

_getPostData()

Parses and gets all the post and file data and adds them to the POST and FILES attributes.

Returns: None

_getURLParams()

Gets all the URL parameters and adds them to the URL_PARAMS attribute.

Returns: None

_getBody()

Parses and gets the body then returns it.

Returns: str

property path()

Returns the URL of the request.

Returns: str

property method()

Returns the HTTP method of the request.

Returns: str

property HTTPVersion()

Returns the HTTP version of the request.

Returns: str

class waffleweb.request.RequestHandler(request, debug=False, apps=None)

A handler for requests to find the views and responses.

	Parameters:
	
	request (Request) - The Request to use to find the response.

	debug (bool) - If debug mode is on.

	apps (list) - If you want to add your own apps instead of using waffleweb.defaults.APPS.

_getArg(index, part)

Converts the URL variable to it’s type. Returns a tuple with the name of the variable and the value: (‘name’, ‘value’).

	Parameters:
	
	index (int) - The section in the URL to convert.

	part (list) - The part in the view’s URL to know what the type to convert is and the name of the argument.

Returns: tuple

_splitURL()

Splits the request’s URL into the different parts. Returns a tuple with the root, split root and extention: (root, splitRoot, ext).

Returns: tuple

getView()

Gets the view function matching the URL and the URL variables in a dictionary, If a view matching the URL can’t be found a HTTP404 will be raised. Returns (viewFunc, {view arguments}).

Returns: tuple

_handleGet(view, kwargs)

Handles GET request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handleHead(view, kwargs)

Handles HEAD request by running the view functions with the kwargs and requests given then stripping the content. Returns what the matched view returns without the content.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handlePost(view, kwargs)

Handles POST request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handlePut(view, kwargs)

Handles PUT request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handleDelete(view, kwargs)

Handles DELETE request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

Returns: Depends

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

_handleConnect(view, kwargs)

Handles CONNECT request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handleOptions(view, kwargs)

Handles OPTIONS request by basically ignores the view function and returning a response with all the allowed methods.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handleTrace(view, kwargs)

Handles TRACE request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

_handlePatch(view, kwargs)

Handles PATCH request by running the view functions with the kwargs and requests given. Returns what the matched view returns.

	Parameters:
	
	view (func) - The view function.

	kwargs (dict) - The URL variables for the function.

Returns: Depends

getErrorHandler(response=None, statusCode=None)

Looks for a error handler with the response’s status code or the statusCode arg. If it finds an error handler it returns the response from the error handler otherwise it returns the response arg. You should provide either a response or a statusCode.

Returns: HTTPResponse

	Parameters:
	
	response (optional) (HTTPResponse) - The response to get the status code from to find the handler.

	statusCode (optional) (int) - The status code to find the handler.

_handle404View()

If a HTTP404 is raised this function will get called. If debug is on it will return a default 404 error page. If debug is off then it will try to get a error handler, but if one cannot be found it will return a plain 404 page.

Returns: HTTPResponse

_405MethodNotAllowed(allowedMethods)

If the view found does not allow the request’s method then this will be called. If debug is on it will return a default 405 error page. If debug is off then it will try to get a error handler, but if one cannot be found it will return a plain 405 page.

Returns: HTTPResponse

_501NotImplementedError()

This will be called when the request’s method is unknown this will be called. If debug is on it will return a default 501 error page. If debug is off then it will try to get a error handler, but if one cannot be found it will return a plain 501 page.

Returns: HTTPResponse

getResponse()

Gets a response.

Returns: HTTPResponse

response.py

class waffleweb.response.HTTPResponseBase(contentType=None, charset=None, status=None, reason=None)

Content Type is defaulted to ‘text/html charset=charset’.

The Date header is automatically added.

The base for the responses.

	Parameters:
	
	contentType (optional) (str) - The content type of the response.

	charset (optional) (str) - The charset to encode the response in, defaults to utf-8.

	status (optional) (int) - The status code of the response, default is 200.

	reason (optional) (str) - The reason phrase of the response.

	Important attributes:
	
	headers (MultiValueOneKeyDict) - A MultiValueOneKeyDict of all your headers.

	statusCode (int) - The status code of the response.

	charset (str) - The charset of the response.

property reasonPhrase()

The status reason phrase of the response, can be set but not deleted.

Returns: str

property charset()

The charset of the response, can be set but not deleted.

Returns: str

setCookie(name, value, path=None, maxAge=None, domain=None, secure=False, HTTPOnly=False, sameSite='Lax')

Sets a cookie to your response.

	Parameters:
	
	name (str) - The name of the cookie.

	value (str) - The value of the cookie.

	path (optional) (str) - The path of the cookie, defaults to the route of your app.

	maxAge (optional) (str) - The maximum age of the cookie.

	domain (optional) (str) - The domain of the cookie.

	secure (optional) (bool) - If the cookie is secure.

	HTTPOnly (optional) (bool) - If the cookie is HTTP Only.

	sameSite (optional) (str) - If your cookie is first-party of same-site.

Returns: None

deleteCookie(name)

Deletes a cookie from your response.

	Parameters:
	
	name (str) - The name of your cookie.

Returns: None

serializeHeaders()

Puts all the headers into a binary string.

Returns: bytes

serialize(content)

This gets the fully binary string including headers and the content.

	Parameters:
	
	content (str) - The response content.

Returns: bytes

convertBytes(value)

The converts the value to bytes, encoding is the response’s charset.

	Parameters:
	
	value (str) - The value to convert.

class waffleweb.response.HTTPResponse(request=None, content=b'', *args, **kwargs)

Inherits from HTTPResponseBase

A HTTP Response.

	Parameters:
	
	request (optional) (Request) - The request data for the cookies.

	content (optional) (str) - The content of the response.

property content()

The content of the response, can be set but not deleted.

class waffleweb.response.JSONResponse(request=None, data={}, **kwargs)

Inherits from HTTPResponse

A Json response.

	Parameters:
	
	request (optional) (Request) - The request data for the cookies.

	data (optional) (dict) - The data of the response.

property data()

The data of the response, can be set but not deleted.

class waffleweb.response.FileResponse(request=None, fileObj=None, mimeType=None, **kwargs)

Inherits from HTTPResponse

A file response.

	Parameters:
	
	request (optional) (Request) - The request data for the cookies.

	fileObj (optional) (File object thing) - The file for the response.

	mimeType (optional) (str) - The mime type of the response.

property fileObj()

The file of the response

class waffleweb.response.HTTPResponseRedirectBase(redirectTo, **kwargs)

Inherits from HTTPResponse

The base for redirects.

	Parameters:
	
	redirectTo (str) - The URL to redirect to.

class waffleweb.response.HTTPResponseRedirect()

Inherits from HTTPResponseRedirectBase

A redirect, status code is 302.

class waffleweb.response.HTTPResponsePermenentRedirect()

Inherits from HTTPResponseRedirectBase

A permanent redirect, status code is 301.

function waffleweb.response.render(request=None, filePath=None, context={}, charset=None, status=None, reason=None)

Renders a template and returns a HTTPResponse. It uses Jinja2 [https://palletsprojects.com/p/jinja/] by default.

	Parameters:
	
	request (optional) (Request) - The request data for the cookies.

	filePath (optional) (str) - The file path to your template.

	content (optional) (dict) - The variables for your template.

	charset (optional) (str) - The charset to encode the response in, defaults to utf-8.

	status (optional) (int) - The status code of the response, default is 200.

	reason (optional) (str) - The reason phrase of the response.

Returns: HTTPResponse

function waffleweb.response.redirect(redirectTo, permanent=False)

A redirect.

	Parameters:
	
	redirectTo (str) - The URL to redirect to.

	permanent (bool) - If the redirect is permanent.

Returns: HTTPResponseRedirect or HTTPResponsePermenentRedirect

static.py

function waffleweb.static.findStatic(path, mode='rb', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Finds a static file, takes all the same arguments as open(). This is to separate the static finder from the static opener so you can provide your own static finder.

Returns: a file object

function waffleweb.static.openStatic(file, mode='rb', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Opens a static file. takes all the same arguments as open(). Its basically just open but it adds your static directory to the start of the path.

Returns: a file object

function waffleweb.static.getStaticFileResponse(request, root, ext)

Finds a static file and puts it into a FileResponse. If can’t find file it raises HTTP404.

	Parameters:
	
	request (Request) - The request for the response.

	root (str) - The path to the file.

	ext (str) - The file extension.

Returns: FileResponse

template.py

function waffleweb.template.getRelativeUrl(viewStr, **kwargs)

Gets the URL of view from the viewStr. A viewStr is appname:viewname. The kwargs are the URL variables.

	Parameters:
	
	viewStr (str) - A string of the app and route of the desired view, Example: appname:viewname.

	**kwargs - The URL variables.

function waffleweb.template._getEnvironmentFile()

Get the environment for Jinja2. It gets a environment with FileSystemLoader with the searchpath being TEMPLATE_DIR from the settings.py file, defaults to ‘templates/’.

Returns: Environment

function waffleweb.template.renderTemplate(filePath, context={})

Renders a template, returns the rendered template.

	Parameters:
	
	filePath (str) - The path to the template.

	context (dict) - The variables for the template.

Returns: str

function waffleweb.template.renderErrorPage(mainMessage, subMessage=None, traceback=None)

Renders an error page for debug mode.

	Parameters:
	
	mainMessage (str) - The main heading for the error page.

	subMessage (optional) (str) - The subheading for the error page.

	traceback (optional) (str) - The traceback to the error.

Returns: str

wsgi.py

class waffleweb.wsgi.WsgiHandler(environ, apps, middlewareHandler)

Handles WSGI.

	Parameters:
	
	environ (dict) - The environ with all the request data and stuff as outlined in PEP 3333.

	apps (list) - All the apps of the project.

	middlewareHandler (MiddlewareHandler) - The middleware handler for middleware.

getResponse()

Gets the response and runs the middleware on it and sets the attribute ‘response’ to the response.

Returns: None

getResponseContent()

Gets the content of the response

Returns: bytes

getResponseHeaders()

Gets the response headers is a list of tuples of names and values.

Returns: list[tuple]

getResponseStatus()

Gets the response status code and message.

Returns: str

 _images/Basics-Debug-Mode.png
division by zero

Traceback
/usr/local/Lib/python3.9/dist-packages/waffleweb/project.py in run():
126: response = handler.getResponse()

/usr/local/Lib/python3.9/dist-packages/waf fleweb/request.py in getResponse():
339: return self._handleGet(view, kwargs)

/usr/local/Lib/python3.9/dist-packages/waf fleweb/request.py in _handlecet():
176: return view.view(self.request, **kwargs)

/media/berserkware/Berserkware/Projects/myProject/app.py in exceptTest():
8: return HTTPResponse(request, str(10/0))

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Waffleweb Documentation

